Journal of Organometallic Chemistry, 228 (1982) 223–228 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

## STUDIES ON <sup>119</sup>Sn AND <sup>207</sup>Pb NMR SPECTRA OF SEVEN-COORDINATE ORGANO-TIN AND -LEAD CHELATES

## JUNZO OTERA \*, ATSUSHI KUSABA, TOMOYA HINOISHI

Okayama University of Science, Ridai-cho, Okayama 700 (Japan)

#### and YOSHIKANE KAWASAKI

Department of Petroleum Chemistry, Osaka University, Yamadaoka, Suita, Osaka 565 (Japan)

(Received July 22nd, 1981)

#### Summary

<sup>119</sup>Sn chemical shifts,  $\delta(^{119}$ Sn), in seven-coordinate organotin chelates, RSn-(Ch)<sub>3</sub> and R<sub>2</sub>Sn(pan)(Ch) (Ch = bidentate chelating ligand and pan = 1-(2pyridylazo)-2-naphtholate), and <sup>207</sup>Pb chemical shifts,  $\delta(^{207}$ Pb), in Me<sub>2</sub>Pb(pan)-(Ch) were measured by means of FT NMR spectroscopy. With a change of the coordination number of tin from six to seven,  $\delta(^{119}$ Sn) values moved upfield by 90–300 ppm. In particular, striking upfield shifts (ca. 300 ppm) were observed for RSn(mdtc)<sub>3</sub> (mdtc = N,N'-dimethyldithiocarbamate). As for R<sub>2</sub>Sn-(pan)(Ch), the magnitude of upfield shifts from corresponding R<sub>2</sub>Sn(Ch)<sub>2</sub> was found to range rather widely depending on chelating ligands. On the basis of these upfield shifts, it was suggested that chelating ligands forming a six- or five-membered ring coordinate to tin more weakly in R<sub>2</sub>Sn(pan)(Ch) than in R<sub>2</sub>Sn(Ch)<sub>2</sub>.

The  $\delta(^{207}Pb)$  values in Me<sub>2</sub>Pb(pan)(Ch) exhibited a quite similar trend to  $\delta(^{119}Sn)$  values in Me<sub>2</sub>Sn(pan)(Ch). It was, however, found that the coordination of the acetylacetonate ligand in Me<sub>2</sub>Pb(pan)(acac) is not so weakened as in the organotin analog.

### Introduction

Many fewer seven-coordinate organotin compounds have been reported than their five- and six-coordinate analogs. The most popular seven-coordinate compounds are monoorganotin tris(chelate),  $RSn(Ch)_3$  (Ch = bidentate chelating ligand). Recently, we have reported a new type of seven-coordinate compounds,  $R_2M(pan)(Ch)$  (I) (M = Sn and Pb, and pan = 1-(2-pyridylazo)-2-naphtholate) [1].

| 6( <sup>119</sup> Sn) AND 6( <sup>207</sup> Pb) VALUES IN        | N SEVEN-COORDIN                | NATE AND CORRE                  | SPONDING SIX-COORDI                        | VATE ORGANO-TIN                | AND -LEAD CHEL                 | ATES                     |
|------------------------------------------------------------------|--------------------------------|---------------------------------|--------------------------------------------|--------------------------------|--------------------------------|--------------------------|
| Seven-coordinate                                                 | δ( <sup>119</sup> Sn)<br>(ppm) | б ( <sup>207</sup> Рb)<br>(ррт) | Six-coordinate                             | δ( <sup>119</sup> Sn)<br>(ppm) | δ( <sup>207</sup> Pb)<br>(ppm) | Δ1 <sup>a</sup><br>(ppm) |
| 1 BuSn(oxin)3<br>2 BuSn(trop)3                                   | 561<br>525                     |                                 | BuSnCl(oxin)2                              | -395                           |                                | 999 <b>t</b> -           |
| 3 MeSn(mdtc) <sub>3</sub>                                        | -786<br>0 - 2                  |                                 |                                            |                                |                                |                          |
| 4 rashmateja<br>5 Messintaanyacae)                               | - 463                          |                                 | PhSnCl(mdtc) <sub>2</sub><br>Mee.Sn(acac)e | 361<br>365                     |                                | -298                     |
| 6 Me <sub>2</sub> Sn(pan)(bzac)                                  | -459                           |                                 | Me Sn(bzac)                                | -356                           |                                |                          |
| 7 Me2Sn(pan)(dbzm)                                               | 4.56                           |                                 | Me2Sn(dbzm)2                               | -348                           |                                | -108                     |
| 8 Me <sub>2</sub> Sn(pan)(tfacac)                                | -449                           |                                 | :                                          |                                |                                |                          |
| 9 Mc <sub>2</sub> Sn(pan)(hfacac)                                | -409                           |                                 |                                            |                                |                                |                          |
| 10 Me2Sn(pan)(oxin)                                              | -435                           |                                 | Me2Sn(oxin)2                               | -237                           |                                | -198                     |
| 11 Me <sub>2</sub> Sn(pan)(5-meox)                               | 432                            |                                 | <b>1</b>                                   |                                |                                |                          |
| 12 Me2Sn(pan)(5-acox)                                            | -435                           |                                 |                                            |                                |                                |                          |
| 13 Me <sub>2</sub> Sn(pan)(trop)                                 | -401                           |                                 | Me2Sn(trop)2                               | -197                           |                                | 204                      |
| 14 Me <sub>2</sub> Sn(pan)(benz)                                 | 388                            |                                 | Me <sub>2</sub> Sn(benz) <sub>2</sub>      | -125                           |                                | -263                     |
| 15 Me <sub>2</sub> Sn(pan)(acet)                                 |                                |                                 | a                                          |                                |                                | 1                        |
| 16 Me2Sn(pan)(form)                                              | -357                           |                                 |                                            |                                |                                |                          |
| 17 Me2Sn(pan)(tfacet)                                            | -341                           |                                 |                                            |                                |                                |                          |
| 18 Me2Sn(pan)(mdtc)                                              | -466                           |                                 | Me <sub>2</sub> Sn(mdtc) <sub>2</sub>      | 338                            |                                | -128                     |
| 19 Me <sub>2</sub> Sn(pan)(edtc)                                 | -463                           |                                 | Me <sub>2</sub> Sn(edtc) <sub>2</sub>      | -333                           |                                | -130                     |
| 20 Ph <sub>2</sub> Sn(pan)(acac) · C <sub>6</sub> H <sub>6</sub> | -602                           |                                 | Pho Sn(acac)                               | -514                           |                                | -88                      |
| 21 Me2 Pb(pan)(acac)                                             |                                | -1189                           | Me2Pb(acac)2                               | L                              | -1051                          | -138                     |
| 22 Me2 Pb(pan)(hfacac)                                           |                                | -1101                           | 1                                          |                                |                                | ł                        |
| 23 Me2Pb(pan)(oxin)                                              |                                | -1058                           |                                            | -                              |                                |                          |
| 24 Me <sub>2</sub> Pb(pan)(acet)                                 |                                | 666                             |                                            |                                |                                |                          |
|                                                                  |                                |                                 |                                            |                                |                                |                          |

 $a \Delta_1 = \delta$  (seven-coordinate) —  $\delta$  (six-coordinate). <sup>b</sup> The value (—695 ppm) reported in ref. 3 should read as —659 ppm.

¢

TABLE 1

In the previous paper on the <sup>119</sup>Sn NMR spectra of five- and six-coordinate organotin chelates, we have shown that the nature of coordination bonds about tin can be characterized to a considerable degree on the basis of <sup>119</sup>Sn chemical shifts,  $\delta$ (<sup>119</sup>Sn) [2].



In the present study, we have measured  $\delta(^{119}Sn)$  values in two types of sevencoordinate organotin chelates described above in order to obtain information on the coordination about tin [3]. In connection with these organotin chelates, <sup>207</sup>Pb chemical shifts,  $\delta(^{207}Pb)$ , in Me<sub>2</sub>Pb(pan)(Ch) are also reported.

### Experimental

Compounds, 1 [4], 2 [5], 3, 4 [6], and  $R_2M(pan)(Ch)$  [1] were prepared according to the methods in literature. Abbreviations for chelating ligands are as follows: oxin = oxinate, trop = tropolonate, mdtc and edtc = N,N'-dimethyland N,N'-diethyldithiocarbamates, acac = acetylacetonate, bzac = benzoylacetonate, dbzm = dibenzoylmethanate, tfacac = trifluoroacetylacetonate, hfacac = hexafluoroacetylacetonate, 5-meox and 5-acox = 5-methyl- and 5-acetyloxinates, benz = benzoate, acet = acetate, form = formate, and tfacet = trifluoroacetate.

The <sup>119</sup>Sn and <sup>207</sup>Pb FT NMR spectra with complete proton noise decoupling were measured using a JEOL FX-100 spectrometer operating at 37.08 and 20.80 MHz at 22°C. Field-frequency control was made with an external D<sub>2</sub>O lock. The chemical shifts (negative signs indicate upfield shifts from the references) were determined relative to external references (Me<sub>4</sub>Sn for  $\delta$ (<sup>119</sup>Sn) and Me<sub>3</sub>PbCl for  $\delta$ (<sup>207</sup>Pb)), and were found to be accurate to ±1 ppm by repeated measurements. The  $\delta$ (<sup>119</sup>Sn) and  $\delta$ (<sup>207</sup>Pb) values of all chelates were obtained in chloroform solution (5–30 wt/vol.%) and showed no concentration dependence as expected from a nonassociative character of these compounds.

## **Results and discussion**

The  $\delta(^{119}\text{Sn})$  and  $\delta(^{207}\text{Pb})$  values in seven-coordinate organo-tin and -lead chelates obtained in this study are listed in Table 1. in which presently available values for corresponding six-coordinate analogs [2] are also given for comparison. Previously we have found upfield shifts of  $\delta(^{119}\text{Sn})$  by 60–150 ppm with a change of the coordination number of tin from four to five and by 130–200 ppm from five to six [2]. Among RSn(Ch)<sub>3</sub> compounds, the oxinate exhibited a moderate shift (ca. 150 ppm) with a change of the coordination number from six to seven, while striking upfield shifts (ca. 300 ppm) were observed for the N,N'-dimethyldithiocarbamates. This presents a marked contrast to the results of Mössbauer spectra. Despite a general trend that an increase in the coordination number of tin(IV) gives smaller isomer shift values, the values for RSn(dtc)<sub>3</sub> have been reported to be larger than for corresponding six-coordinate RSnX-(dtc)<sub>2</sub> [6]. The  $\delta$ (<sup>119</sup>Sn) values, therefore, seem to be preferable for a qualitative estimation of the coordination number. It is interesting to note that the  $\delta$ (<sup>119</sup>Sn) value of MeSn(mdtc)<sub>3</sub> (3) is comparable with that of MeSnI<sub>3</sub> · 2 DMSO (-795 ppm) [7] which, to our knowledge, shows the greatest upfield shift reported for organotin compounds so far. Compound 3 is further unique in giving rise to  $\delta$ (<sup>119</sup>Sn) upfield of PhSn(mdtc)<sub>3</sub> (4), because  $\delta$ (<sup>119</sup>Sn) values in methyltin compounds usually lie downfield of those in phenyltin analogs [8].

As for  $R_2Sn(pan)(Ch)$ , the  $\delta(^{119}Sn)$  values were observed in a rather narrow range and moved downfield in the following order; the  $\beta$ -diketonates  $\simeq$  the dithiocarbamates > the oxinates > the tropolonate > the carboxylates. On the other hand, the difference between the corresponding seven- and six-coordinate compounds,  $\Delta_1$ , ranges widely (from -88 to -263 ppm) depending on chelating ligands, suggesting that a replacement of one of chelating ligands in  $R_2Sn$ -(Ch)<sub>2</sub> by pan does not necessarily induce a similar effect on  $\delta(^{119}Sn)$  for all compounds.

Let us suppose that a contribution of each chelating ligand to a  $\delta(^{119}Sn)$  value is a half of the  $\delta(^{119}Sn)$  values in Me<sub>2</sub>Sn(Ch)<sub>2</sub>, and that the contribution of the pan ligand (Cp) is adjusted to -325 ppm according to the following equation:

## $\delta(Me_2Sn(pan)(benz)) = Cp + \frac{1}{2}\delta(Me_2Sn(benz)_2)$

The Cp value thus obtained would be reasonable if the contribution of the benz ligand is invariant in both six- and seven-coordinate complexes. IR spectra suggest a fair appropriateness of this assumption since  $v_{asym}$  (C=O) band in solution appears at 1607 cm<sup>-1</sup> in Me<sub>2</sub>Sn(benz)<sub>2</sub> and 1603 cm<sup>-1</sup> in Me<sub>2</sub>Sn(pan)(benz), indicative of little change in a coordination mode of the benz ligand in both compounds. Then, the estimated  $\delta(^{119}Sn)$  values in mixed chelate compounds are obtained by summation of contributions from each fragment as given in Table 2. In the last column of this table is shown a difference of the observed and the estimated values ( $\Delta_2$ ), which increases with an increasing ring size of bidentate ligands. Since any substantial difference in coordination of the pan ligand in Me<sub>2</sub>Sn(pan)(Ch) has not been detected on the basis of visible spectra [1], an increase in  $\Delta_2$  can be attributed mostly to a change of coordination mode of bidentate ligands. We have revealed that  $\delta(^{119}Sn)$  values in organotin chelates move downfield when bidentate ligands become less symmetric [2]. The downfield deviation of the observed values from the estimated values, therefore, may be induced by a symmetry reduction of bidentate ligands in Me<sub>2</sub>Sn(pan)(Ch). The asymmetric chelation has been postulated for Me<sub>2</sub>Sn-(pan)(acac) (5) on the basis of <sup>1</sup>H NMR and IR spectra [1]. Although the acac ligands coordinate to tin symmetrically in Me<sub>2</sub>Sn(acac)<sub>2</sub> as depicted in structure II, two Sn—O bonds are not equivalent in 5 so that a considerable

| Ligand  | Contribution<br>of ligand<br>(ppm) | δ(estimated)<br>(ppm) | δ(observed)<br>(ppm) | (Δ <sub>2</sub> ) <sup>a</sup><br>(ppm) |
|---------|------------------------------------|-----------------------|----------------------|-----------------------------------------|
| <br>pan |                                    |                       | -                    |                                         |
| benz    | 63                                 | 388                   | 388                  | 0                                       |
| trop    | 99                                 | -424                  | 401                  | +23                                     |
| oxin    |                                    | -444                  | -435                 | +9                                      |
| dbzm    |                                    | -499                  | -456                 | +43                                     |
| bzac    | 178                                | 503                   | -459                 | +44                                     |
| acac    |                                    | 508                   | -463                 | +45                                     |

TABLE 2 ESTIMATED  $\delta(^{119}Sn)$  VALUES

 $^{\alpha} \Delta_2 \approx \delta$ (observed) —  $\delta$ (estimated).

contribution of the structure III is involved. The reduction of symmetry in the trop ligand in 13 is also suggested by IR spectra. That the Sn-O stretching



vibration of this compound (562 cm<sup>-1</sup>) appears at higher wave number than that of Me<sub>2</sub>Sn(trop)<sub>2</sub> (543 cm<sup>-1</sup>) indicates a lowered symmetry; that is, the covalently linked Sn—O bond which is responsible for a  $\nu$ (Sn—O) band around 550 cm<sup>-1</sup> enhances its covalency and the coordination bond between tin and carbonyl oxygen is weakened in **13**. The  $\Delta_2$  values decreases in the following order, the  $\beta$ -diketonates > the tropolonate > the oxinate, parallel with the decreasing order of ligand symmetry. Apparently, a symmetric character of bidentate ligands is perturbed in Me<sub>2</sub>Sn(pan)(Ch) to a higher degree for a more essentially symmetric ligand.

The  $\delta(^{207}\text{Pb})$  values in Me<sub>2</sub>Pb(pan)(Ch) exhibited a quite similar trend to  $\delta(^{119}\text{Sn})$  values in Me<sub>2</sub>Sn(pan)(Ch) and moved downfield in the order of the  $\beta$ -diketonates > the oxinate > the acetate. However, the  $\Delta_1$  value for the acetyl-acetonate **22** is somewhat larger than that for the organotin analog **5**, suggesting that the coordination of the acac ligand in **22** is not so much weakened as in **5**. This is consistent with the results of <sup>1</sup>H NMR and IR spectra which have disclosed more symmetric chelation of the acac ligand in **22** as compared with **5** [1].

#### Acknowledgement

The authors are grateful to Prof. R. Okawara for his helpful discussion.

# References

- 1 Y. Kawasaki and T. Sasaki, Chem. Lett.; (1979) 279, Bull. Chem. Soc. Jpn., to be published.
- 2 J. Otera, T. Hinoishi, Y. Kawabe and R. Okawara, Chem. Lett., (1981) 273; J. Otera, J. Organometal. Chem., 221 (1981) 57.
- 3 For a preliminary communication of this study, see J. Otera, T. Hinoishi and R. Okawara, J. Organometal. Chem., 202 (1980) C93.
- 4 K. Kawakami, Y. Kawasaki and R. Okawara, Bull. Chem. Soc. Jpn., 40 (1967) 2693.
- 5 M. Komura, T. Tanaka and R. Okawara, Inorg. Chim. Acta, 2 (1968) 321.
- 6 J.C. May, D. Petridis and C. Curran, Inorg. Chim. Acta, 5 (1971) 511.
- 7 J.D. Kennedy and W. McFarlane, Rev. Silicon, Germanium, Tin and Lead Compounds, 1 (1974) 235.
- 8 P.J. Smith and A.P. Tupciauskas, Ann. Rep. NMR Spectroscopy, 8 (1978) 291.